B	Ξ			Ξ	N
SENDI	NG /	ALL T	HE RIG	HT SI	GNALS

TECHNICAL DATA SHEET	Code	H125A00
	version	9
	date	2008-01-22
COAX H125 AL PVC	page	1/2

APPLICATION

Coaxial cables used in cabled distribution networks designed according the European Standard EN 50117-2-1 and EN50117-2-4 operating at frequencies between 5 and 3000 MHz.

CONSTRUCTION

1 2 3.1 3.2 4

1 Inner conductor Solid soft annealed copper

2 Dielectric Gas injected PE3.1 Foil AL-PET-AL

3.2 Braid Annealed tinned copper

4 Sheath PVC

REQUIREMENTS AND TEST METHODS

Test methods in accordance with European standard EN 50117-1.

Mechanical characteristics

1. Inner conductor.

Diameter: $1.00 \text{ mm} \pm 0.03 \text{ mm}$

2. Dielectric:

Diameter: $4.8 \text{ mm} \pm 0.15 \text{ mm}$ Adhesion: No shrink back

3. Outer conductor:

Nominal diameter screen: 5.4 mm Foil overlap: \geq 1 mm Coverage braid: 34 % \pm 4 %

4. Sheath:

Diameter: $6.8 \text{ mm} \pm 0.2 \text{ mm}$ Tensile strength: $\geq 12.5 \text{ N/mm}^2$ Elongation at break: $\geq 150 \%$

5. Cable:

Crush resistance of cable: < 1% (load of 700N)

Storage/operating temperature: -40°C to +70°C

Minimum installation temperature: -5 °C Minimum static bend radius: -5 °C

TECHNICAL DATA SHEET	Code	H125A00
	version	9
	date	2008-01-22
COAX H125 AL PVC	page	2/2

Electrical characteristics

Mean characteristic impedance:	$75 \pm 3 \Omega$
Regularity of impedance:	> 40 dB
DC loop resistance:	$\leq 50 \ \Omega/km$
DC resistance inner conductor:	$\leq 23 \ \Omega/\mathrm{km}$
DC resistance outer conductor:	$\leq 27~\Omega/km$

Capacitance: 55 pF/m \pm 2 pF/m

Velocity ratio: 0.81 ± 0.02 Insulation resistance: $\geq 10^4$ MΩ.km

Dielectric strenght:2 kVdcVoltage test of the sheath:3.75 kVdcScreening efficiency 100-1000 MHz: $\geq 75 \text{ dB}$

Transfer impedance: $40 \text{ m}\Omega/\text{m}$

Class: C

Return loss at 5-30 MHz: \geq 23 dB* 30-470 MHz: \geq 23 dB* 470-1000 MHz: \geq 20 dB*

1000-2000 MHz: $\geq 18 \text{ dB*}$ 2000-3000 MHz: $\geq 16 \text{ dB*}$

^{*}Max. 3 peak values 4 dB lower than specified.

Longitudinal attenuation:	a = 0.58
$a \cdot \sqrt{f} + b \cdot f + c$	b = 0.0021
where f is frequency in MHz	c = 0.5

Nominal	Attenuation at	Nominal
1.8 dB/100m	800 MHz:	18.6 dB/100m
4.7 dB/100m	862 MHz:	19.3 dB/100m
6.5 dB/100m	1000 MHz:	20.9 dB/100m
9.1 dB/100m	1350 MHz:	24.6 dB/100m
9.8 dB/100m	1750 MHz:	28.4 dB/100m
12.9 dB/100m	2400 MHz:	34.0 dB/100m
16.0 dB/100m	3000 MHz:	38.6 dB/100m
	1.8 dB/100m 4.7 dB/100m 6.5 dB/100m 9.1 dB/100m 9.8 dB/100m 12.9 dB/100m	1.8 dB/100m 800 MHz: 4.7 dB/100m 862 MHz: 6.5 dB/100m 1000 MHz: 9.1 dB/100m 1350 MHz: 9.8 dB/100m 1750 MHz: 12.9 dB/100m 2400 MHz:

Maximum attenuation is 10% higher.

REVISIONS

#	Description	Date	Initials

Belden declares this product to be in compliance with the environmental regulations EU RoHS (Directive 2002/95/EC, 27 January 2003); this is valid for all material produced after the RoHS compliant date for this product.