

Product: OSP6F ☑

Category 6 OSP Cable, 4 Pair, F/UTP, Gel Filled

Product Description

Category 6 Premise Horizontal Cable (350MHz), OSP Rated, 4-Pair, 23 AWG Solid Bare Copper Conductors, F/UTP, Gel-Filled, Polyethylene Jacket

Technical Specifications

Product Overview

Suitable Applications:	OSP-Outside, Premise Horizontal Cable, Ethernet 1000BASE-T, Ethernet 100BASE-TX, Ethernet 10BASE-T, PoE++, PoE+, PoE, Noisy Environments
Patent:	This product has one or more applicable patents. More information on patents can be found at https://www.belden.com/patents.

Construction Details

Conductor

Size	Stranding	Material	No. of Pairs
23	Solid	BC - Bare Copper	4

Insulation

Material	Color Code
PO - Polyolefin	White & Blue, White & Orange, White & Green, White & Brown

Inner Jacket

Material	Nom. Diameter
PE - Polyethylene	0.26 in (6.6 mm)

Outer Shield

Shield Type	Material	Coverage	Drainwire Type
Таре	Bi-Laminate (Alum+Poly)	100%	26 AWG (7x34) TC

Outer Jacket

PO - Polyolefin 0.360 in (9.14 mm) Yes	Material	Nom. Diameter	Ripcord
	PO - Polyolefin	0.360 in (9.14 mm)	Yes

Overall Cable
Diameter (Nominal): 0.360 in (9.14 mm)

Electrical Characteristics

Electricals

Max. Conductor DCR	Max. Capacitance Unbalance
93.8 Ohm/km	160 pF/100m

Delay

Frequency	Max. Delay	Max. Delay Skew	Nom. Velocity of Prop.
100 MHz	537.6 ns/100m	45 ns/100m	65%

High Frequency

Frequency [MHz]	Max. Insertion Loss (Attenuation)	Min. NEXT [dB]	Min. PSNEXT [dB]	Min. PSACR [dB]	Min. ACRF (ELFEXT) [dB]	Min. PSACRF (PSELFEXT) [dB]	Min. RL (Return Loss) [dB]	Max./Min. Input Impedance (unFitted)	Max./Min. Fitted Impedance	Min. TCL [dB]	Min. ELTCTL [dB]	
--------------------	--------------------------------------	----------------------	------------------------	-----------------------	----------------------------	--------------------------------	----------------------------------	---	-------------------------------	---------------------	------------------------	--

1	2.0 dB/100m	74.3	72.3	70.3	67.8	64.8	20.0	100 ± 15 Ohm	100 ± 15 Ohm	40.0	35.0
4	3.8 dB/100m	65.3	63.3	59.5	55.7	52.7	23.0	100 ± 15 Ohm	100 ± 15 Ohm	40.0	23.0
8	5.3 dB/100m	60.8	58.8	53.4	49.7	46.7	24.5	100 ± 15 Ohm	100 ± 15 Ohm	40.0	16.9
10	6.0 dB/100m	59.3	57.3	51.4	47.8	44.8	25.0	100 ± 15 Ohm	100 ± 15 Ohm	40.0	15.0
16	7.6 dB/100m	56.3	54.3	46.7	43.7	40.7	25.0	100 ± 15 Ohm	100 ± 15 Ohm	38.0	10.9
20	8.5 dB/100m	54.8	52.8	44.3	41.7	38.7	25.0	100 ± 15 Ohm	100 ± 15 Ohm	37.0	9.0
25	9.5 dB/100m	53.3	51.3	41.8	39.8	36.8	24.3	100 ± 15 Ohm	100 ± 15 Ohm	36.0	7.0
31.25	10.7 dB/100m	51.9	49.9	39.2	37.9	34.9	23.6	100 ± 15 Ohm	100 ± 15 Ohm	35.1	5.1
62.5	15.4 dB/100m	47.4	45.4	30.0	31.8	28.8	21.5	100 ± 15 Ohm	100 ± 15 Ohm	32.0	
100	19.8 dB/100m	44.3	42.3	22.5	27.8	24.8	20.1	100 ± 15 Ohm	100 ± 15 Ohm	30.0	
155	25.2 dB/100m	41.5	39.5	14.3	23.9	20.9	18.8	100 ± 22 Ohm	100 ± 15 Ohm	28.1	
200	29.0 dB/100m	39.8	37.8	8.8	21.7	18.7	18.0	100 ± 22 Ohm	100 ± 15 Ohm	27.0	
250	32.8 dB/100m	38.3	36.3	3.5	19.8	16.8	17.3	100 ± 32 Ohm	100 ± 15 Ohm	26.0	

Voltage

Voltage Rating 300 V

Mechanical Characteristics

Temperature

Operating	Installation	Storage
-40°C To +75°C	-40°C To +60°C	-40°C To +75°C

Bend Radius

Stationary Min.	Installation Min.
3.0 in (76 mm)	3.75 in
Max. Pull Tension	n: 25 lbs (11 kg)
Bulk Cable Weigh	nt: 50 lbs/1000ft

Standards and Compliance

Environmental Suitability:	Outdoor, Outdoor, Sunlight Resistance, Aerial - When supported by messenger wire
IEEE Compliance:	IEEE 802.3bt Type 1, Type 2, Type 3, Type 4
Data Category:	Category 6
TIA/EIA Compliance:	ANSI/TIA-568.2-D Category 6
ISO/IEC Compliance:	11801 ed 2.2 (2011) Class E
European Directive Compliance:	EU Directive 2015/863/EU (RoHS 2 amendment), EU Directive 2011/65/EU (RoHS 2), EU Directive 2012/19/EU (WEEE), REACH: 2017-07-10
APAC Compliance:	China RoHS II (GB/T 26572-2011)

Product Notes

Notes:	Electrical values are expected performance based on cable testing and representative performance within a typical Belden system. Print Includes Descending Footage/Meter Markings from Max. Put-Up Length to 0. Not Suitable for Direct Burial. Belden recommends using an entrance demarcation point when transitioning inside buildings with gel-filled OSP cables due to the
	cable design containing gel specific for wet outdoor environments. The suggested transition point is the REVConnect core coupler, part number RVACPKUBK-S1.

History

Update and Revision:	Revision Number: 0.339 Revision Date: 04-29-2024

Part Numbers

Variants

Item #	Color	Putup Type	Length	UPC
OSP6F 0101000	Black	Reel	1,000 ft	612825400868

© 2024 Belden, Inc

All Rights Reserved.

Although Belden makes every reasonable effort to ensure their accuracy at the time of this publication, information and specifications described here in are subject to error or omission and to change without notice, and the listing of such information and specifications does not ensure product availability.

Belden provides the information and specifications herein on an "ASIS" basis, with no representations or warranties, whether express, statutory or implied. In no event will Belden be liable for any damages (including consequential, indirect, incidental, special, punitive, or exemplary damages) whatsoever, even if Belden has been advised of the possibility of such damages, whether in an action under contract, negligence or any other theory, arising out of or in connection with the use, or inability to use, the information or specifications described herein.

All sales of Belden products are subject to Belden's standard terms and conditions of sale.

Belden believes this product to be in compliance with all applicable environmental programs as listed in the data sheet. The information provided is correct to the best of Belden's knowledge, information and belief

at the date of its publication. This information is d Disclosure is not to be considered a warranty or or regulations based on their individual usage of the	esigned only as a general guide for the sat yuality specification. Regulatory information product.	fe handling, storage, and any othen n is for guidance purposes only. Pr	r operation of the product itself or tr oduct users are responsible for det	ne one that it becomes a part of. T ermining the applicability of legisla	ne Product ition and